

Eigenvalues and Eigenvectors

If we have a $n \times 1$ column vector \mathbf{v} and multiply it on the left by a $n \times n$ matrix A, then we will obtain another $n \times 1$ column vector $A\mathbf{v}$. In general this new vector will not be parallel to \mathbf{v} but for certain vectors it may turn out that \mathbf{v} and $A\mathbf{v}$ are parallel. That is, it may happen that

 $A\mathbf{v} = \lambda \mathbf{v}$ for some number λ .

The vectors \mathbf{v} for which this happens and the corresponding λ 's are very special and we say that λ is an *eigenvalue* of A with \mathbf{v} the corresponding *eigenvector*.

In order to find the eigenvalues λ of a matrix A we solve the *characteristic equation*

$$\det(A - \lambda I) = 0,$$

where I is the identity matrix of the same size as A. Note that an equivalent form of the characteristic equation is

$$\det(\lambda I - A) = 0,$$

and this will give exactly the same eigenvalues as $det(A - \lambda I) = 0$, so it doesn't matter which one you use.

For an $n \times n$ matrix det $(A - \lambda I)$ will be a polynomial of degree n, so let us first look at an example when n = 2.

Example: Find the eigenvalues of the matrix $\begin{pmatrix} 1 & 3 \\ 2 & -4 \end{pmatrix}$. We start by writing down the characteristic equation. In this case it is

$$\det\left(\left(\begin{array}{rrr}1 & 3\\2 & -4\end{array}\right) - \lambda\left(\begin{array}{rrr}1 & 0\\0 & 1\end{array}\right)\right) = 0.$$

We can write this as

$$\det \left(\begin{array}{cc} 1-\lambda & 3\\ 2 & -4-\lambda \end{array} \right) = 0$$

and on calculating the determinant we obtain

$$(1-\lambda)(-4-\lambda) - 6 = 0$$

or

$$\lambda^2 + 3\lambda - 10 = 0.$$

Thus

$$(\lambda - 2)(\lambda + 5) = 0,$$

so that the eigenvalues are

$$\lambda = 2$$
 and $\lambda = -5$.

Once we have found the eigenvalues we have to find the eigenvectors corresponding to each one.

Example: Find the eigenvectors corresponding to the eigenvalues found above.

 $\lambda = 2$: we first form the *eigenvector equation*

$$A\mathbf{v} = \lambda \mathbf{v},$$

where we let

$$\mathbf{v} = \left(\begin{array}{c} x\\ y \end{array}\right).$$

Since $\lambda = 2$, this is

$$\left(\begin{array}{cc}1&3\\2&-4\end{array}\right)\left(\begin{array}{c}x\\y\end{array}\right) = 2\left(\begin{array}{c}x\\y\end{array}\right)$$

On multiplying this out we obtain

$$\left(\begin{array}{c} x+3y\\ 2x-4y\end{array}\right) = \left(\begin{array}{c} 2x\\ 2y\end{array}\right).$$

So we obtain the two equations

$$x + 3y = 2x \quad \text{and} \quad 2x - 4y = 2y.$$

Both these equations reduce to x = 3y, so that any non-zero vector of the form $\begin{pmatrix} 3a \\ a \end{pmatrix}$ will be an eigenvector corresponding to the eigenvalue $\lambda = 2$.

If we just want one eigenvector, then we can let a = 1, say, to obtain the eigenvector $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

 $\lambda = -5$: In this case the eigenvector equation $A\mathbf{v} = \lambda \mathbf{v}$ becomes

$$\begin{pmatrix} 1 & 3 \\ 2 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = -5 \begin{pmatrix} x \\ y \end{pmatrix}$$

On multiplying this out we obtain

$$\left(\begin{array}{c} x+3y\\ 2x-4y\end{array}\right) = \left(\begin{array}{c} -5x\\ -5y\end{array}\right),$$

which yields the two equations

$$x + 3y = -5x$$
 and $2x - 4y = -5y$.

Both these equations reduce to y = -2x, so that any non-zero vector of the form $\begin{pmatrix} a \\ -2a \end{pmatrix}$ will be an eigenvector corresponding to the eigenvalue $\lambda = -5$.

If we just want one eigenvector, then we can let a = 1, say, to obtain the eigenvector $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

In summary, the eigenvalues of the matrix $\begin{pmatrix} 1 & 3 \\ 2 & -4 \end{pmatrix}$ are 2 and -5 with corresponding eigenvectors $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

As a check, note that the eigenvector equation holds in both cases:

$$\begin{pmatrix} 1 & 3 \\ 2 & -4 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 3 \\ 1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 3 \\ 2 & -4 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = -5 \begin{pmatrix} 1 \\ -2 \end{pmatrix}.$$